Variable selection for varying coefficient models with the sparse regularization

نویسندگان

  • Hidetoshi Matsui
  • Toshihiro Misumi
چکیده

Varying-coefficient models are useful tools for analyzing longitudinal data. They can effectively describe a relationship between predictors and responses repeatedly measured. We consider the problem of selecting variables in the varying-coefficient models via the adaptive elastic net regularization. Coefficients given as functions are expressed by basis expansions, and then parameters involved in the model are estimated by the penalized likelihood method using the coordinate descent algorithm derived for solving the problem of sparse regularization. We examine the effectiveness of our modeling procedure through Monte Carlo simulations and real data analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection for Partially Linear Varying Coefficient Transformation Models with Censored Data

In this paper, we study the problem of variable selection for varying coefficient transformation models with censored data. We fit the varying coefficient transformation models by maximizing the marginal likelihood subject to a shrinkage-type penalty, which encourages sparse solutions and hence facilitates the process of variable selection. We further provide an efficient computation algorithm ...

متن کامل

Regularization and Model Selection with Categorial Predictors and Effect Modifiers in Generalized Linear Models

Varying-coefficient models with categorical effect modifiers are considered within the framework of generalized linear models. We distinguish between nominal and ordinal effect modifiers, and propose adequate Lasso-type regularization techniques that allow for (1) selection of relevant covariates, and (2) identification of coefficient functions that are actually varying with the level of a pote...

متن کامل

Dimensionality Reduction via Sparse Support Vector Machines

We describe a methodology for performing variable ranking and selection using support vector machines (SVMs). The method constructs a series of sparse linear SVMs to generate linear models that can generalize well, and uses a subset of nonzero weighted variables found by the linear models to produce a final nonlinear model. The method exploits the fact that a linear SVM (no kernels) with `1-nor...

متن کامل

Group lassoing change-points in piecewise-constant AR processes

Regularizing the least-squares criterion with the total number of coefficient changes, it is possible to estimate timevarying (TV) autoregressive (AR) models with piecewise-constant coefficients. Such models emerge in various applications including speech segmentation, biomedical signal processing, and geophysics. To cope with the inherent lack of continuity and the high computational burden wh...

متن کامل

Group lassoing change-points in piecewise-constant AR

Regularizing the least-squares criterion with the total number of coefficient changes, it is possible to estimate timevarying (TV) autoregressive (AR) models with piecewise-constant coefficients. Such models emerge in various applications including speech segmentation, biomedical signal processing, and geophysics. To cope with the inherent lack of continuity and the high computational burden wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013