Variable selection for varying coefficient models with the sparse regularization
نویسندگان
چکیده
Varying-coefficient models are useful tools for analyzing longitudinal data. They can effectively describe a relationship between predictors and responses repeatedly measured. We consider the problem of selecting variables in the varying-coefficient models via the adaptive elastic net regularization. Coefficients given as functions are expressed by basis expansions, and then parameters involved in the model are estimated by the penalized likelihood method using the coordinate descent algorithm derived for solving the problem of sparse regularization. We examine the effectiveness of our modeling procedure through Monte Carlo simulations and real data analysis.
منابع مشابه
Variable Selection for Partially Linear Varying Coefficient Transformation Models with Censored Data
In this paper, we study the problem of variable selection for varying coefficient transformation models with censored data. We fit the varying coefficient transformation models by maximizing the marginal likelihood subject to a shrinkage-type penalty, which encourages sparse solutions and hence facilitates the process of variable selection. We further provide an efficient computation algorithm ...
متن کاملRegularization and Model Selection with Categorial Predictors and Effect Modifiers in Generalized Linear Models
Varying-coefficient models with categorical effect modifiers are considered within the framework of generalized linear models. We distinguish between nominal and ordinal effect modifiers, and propose adequate Lasso-type regularization techniques that allow for (1) selection of relevant covariates, and (2) identification of coefficient functions that are actually varying with the level of a pote...
متن کاملDimensionality Reduction via Sparse Support Vector Machines
We describe a methodology for performing variable ranking and selection using support vector machines (SVMs). The method constructs a series of sparse linear SVMs to generate linear models that can generalize well, and uses a subset of nonzero weighted variables found by the linear models to produce a final nonlinear model. The method exploits the fact that a linear SVM (no kernels) with `1-nor...
متن کاملGroup lassoing change-points in piecewise-constant AR processes
Regularizing the least-squares criterion with the total number of coefficient changes, it is possible to estimate timevarying (TV) autoregressive (AR) models with piecewise-constant coefficients. Such models emerge in various applications including speech segmentation, biomedical signal processing, and geophysics. To cope with the inherent lack of continuity and the high computational burden wh...
متن کاملGroup lassoing change-points in piecewise-constant AR
Regularizing the least-squares criterion with the total number of coefficient changes, it is possible to estimate timevarying (TV) autoregressive (AR) models with piecewise-constant coefficients. Such models emerge in various applications including speech segmentation, biomedical signal processing, and geophysics. To cope with the inherent lack of continuity and the high computational burden wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013